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A SIMPLE TEST FOR HETEROSCEDASTICITY AND RANDOM
COEFFICIENT VARIATION

By T. S. BREUSCH AND A. R. PaGgan'

A simple test for heteroscedastic disturbances in a linear regression model is developed
using the framework of the Lagrangian multiplier test. For a wide range of heteroscedastic
and random coefficient specifications, the criterion is given as a readily computed function
of the OLS residuals. Some finite sample evidence is presented to supplement the general
asymptotic properties of Lagrangian multiplier tests.

1. INTRODUCTION

IN SOME APPLICATIONS of the general linear model, the usual assumptions of
homoscedastic disturbances and fixed coefficients may be questioned. When these
requirements are not met, the loss in efficiency in using ordinary least squares
(OLS) may be substantial and, more importantly, the biases in estimated standard
errors may lead to invalid inferences. This has caused a number of writers to
propose models which relax these conditions and to devise estimators for their
more general specifications, e.g., Goldfeld and Quandt [8] for heteroscedasticity
and Hildreth and Houck [11] for random coefficients. However, because the effect
of introducing random coefficient variation is to give the dependent variable a
different variance at each observation, models with this feature can be considered
as particular heteroscedastic formulations for the purpose of detecting departure
from the standard linear model.

A test for heteroscedasticity with the same asymptotic properties as the
likelihood ratio test in standard situations, but which can be computed by two least
squares regressions, thereby avoiding the iterative calculations necessary to
obtain maximum likelihood estimates of the parameters in the full model, is
considered in this paper. The approach is based on the Lagrangian multiplier
(LM) test of Aitchison and Silvey [1, 20] which is also known as Rao’s efficient
score test [18, p. 417]. This statistic is obtained from the results of maximizing the
likelihood subject to the parameter constraints implied by the null hypothesis and
can be computed either from the Lagrangian multipliers corresponding to the
constraints as in [1] or from the first order conditions as in [18].> Asymptotic
equivalence of the LM test with the likelihood ratio procedure is shown in some
detail by Silvey [20]. The test proposed in this paper is ‘“‘constructive” in the sense
of [9, p. 85] because a specific form of heteroscedasticity is distinguished as the
alternative to the null hypothesis of homoscedasticity. However, it will be seen
that the same LM statistic is appropriate for a fairly wide class of alternative
hypotheses.

There are four sections to the paper. In Section 2 the general framework is set
out and the statistic is derived, Section 3 considers finite sample properties, and
general comments are made in the concluding Section 4.

' We would like to thank unknown referees for their comments.
“Similar ideas have been used in other areas, e.g., the-Durbin [5] h-statistic for autocorrelation in
models with lagged dependent variables as regressors can be derived as an LM statistic.
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2. THE TEST STATISTIC
Consider the linear model
(1) Yt=x23+ul (r=1,...,N)

where B is a (k X 1) vector of coefficient parameters and the disturbances u, are
normally and independently distributed with mean zero and variance

(2) ol =h(z.a).

Here function A(-), which is not indexed by ¢, is assumed to possess first and
second derivatives, «a is a (p X 1) vector of unrestricted parameters functionally
unrelated to the B coefficients, and the first element in z, is unity. This allows the
null hypothesis of homoscedasticity to be written as

Hy:a,=...=a,=0

for then zla = a; so that o2 = h(a;) = o? is constant. It is also assumed that x, and
z, are exogenous, obeying the conditions set out in Amemiya [2].

The representation in (2) is sufficiently general to include most of the hetero-
scedastic models distinguished in the literature. These are usually either

ol = exp (z:a)

which has been shown by Harvey [10] to encompass the specifications of [6, 15
and 16], or

ol =(zia)"
with m a prespecified integer as in [7, 8, and 19]. The random coefficient model of
Hildreth and Houck [11] and most of its later generalizations, for example the one
considered by Swamy and Mehta [21], are of the form o2 = z'a where the
elements of z, are obtained from the distinct elements of x.x’.>

Define the OLS residuals from (1) as &, and the estimated residual variance as
62=N"13 42. This allows our basic result to be stated in the following theorem.

THEOREM: For the model (1) and (2) under the conditions given above, the
Lagrangian multiplier statistic for testing Ho:ax=...=a, =0 (homoscedastic
disturbances) can be found as one half the explained sum of squares in a regression
of g =G 20! upon z, and is asymprotically distributed as x> with (p — 1) degrees of
freedom when the null hypothesis is true.*

3 Note that there are some heteroscedastic models which do not fit our general formulation, e.g.,
oy =az, (scalar « and z,) and 0,2 OC[E(y,)]z. But these specifications do not provide a convenient
framework for testing homoscedasticity. In the first example, there is no parametric restriction which
gives the null hypothesis as a special case of the general model, and in the second there is no regression
without heteroscedasticity because of the implied relationship between a and B.

* The statistic is defined as a regression result to give a convenient method of computation which is
not meant to imply that the usual criteria for “goodness of fit”’ of this regression have any meaningful
properties.
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PROOF: Let /() be a log likelihood depending on a vector of parameters 6
with d = 3l/36 as the first derivative (score) vector and .$ = —E(3°1/9606’) as the
information matrix. Then following Rao [18, pp. 418-419] the LM statistic for
testing the null hypothesis represented by parametric constraints ¢ (6) = 0 is given

by

LM=d4d'$"'d
where the hats indicate that the quantities are evaluated with 8, the restricted
maximum likelihood estimate satisfying ¢»(8) = 0. For the case where 8’ = (6} : 63)
and the constraints refer to only one of the subsets, say ¢(§2) =0, the vector d may
be partitioned conformably as d’'=(d}:d5) so that d; =0 from constrained

maximum likelihood. If, furthermore, the information matrix is block diagonal
between 6, and 6,, $,; = —E(3°1/36,00)) = 0, the statistic becomes

LM =d5$3:d,
where
.gzz = _E(321/60230'2 )
For the model given by (1) and (2) the log likelihood is

I(B,a)=—3Nlog 2m)—3¥ logo; —3Y a; (y.—x!B)

where o = h(z.a). The first derivative with respect to the o parameters is
d. =dl/6a =3 z h(s)ziotul —ai?)

where s, = z,a and h'(s,) = dh(s.)/ds.. It is easily seen that faﬁ =—E3°l/9adB’) =
0 so that the LM statistics for testing Hy will be d f,md where constrained
maximum likelihood corresponds to OLS applied to (1). Evaluating the required
quantities gives

d. =3677h'(dy)] Z z(67%ar - 1),
=367 h' @)Y 22!,
t
and the statistic is

@ M=YTaf) (Z2e) (Ta)

where f,=(¢" 252 —1)=g,—1. Alternatively, collect all N observations by

defining Z =(z1,...,28), f=(f1,. .., fn),8=(g1,...,8~n),and i as an (N X 1)
vector of units. Then f= (g —i),i'g=N, i'’f=0,and fZ(Z'Z) 'Z'i = 0 because i
is the first column of Z. Thus

=3fz(Z'z)'z'f
=3g'Z2(Z2'2)"'Z'g—N"\(i'g)"]
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which is one half of the explained sum of squares in the regression of g, upon z,
(see Goldberger [12, p. 165, eq. (4.21))).

Let 4> =6g, let S be the explained sum of squares from the regression of &”
against Z, and let 8 be the OLS estimates of the coefficients (8) in this regression.
From Amemiya [2, eqgs. (5) and (6)] it follows that, under the null hypothesis,
N*(é—&)»N(O, 20 (N'Z'Z)7") so that (20'4)_15—’X§—1 as in standard least
squares theory. As LM = (26*) 'S and ¢* > o in probability under Hy, it follows
that LM - x._, in distribution.

3. FINITE SAMPLE PROPERTIES

As with all procedures developed from asymptotic principles, it is desirable to
investigate the properties of the statistic based on a finite amount of data. It is
difficult to establish the exact small sample distribution by analytical methods as
the LM statistic is the ratio of quadratic forms in the OLS residuals 2, which are
dependent gamma variables, and very little work has been done in analyzing such
distributions. However, as the distribution of the LM statistic under Hy, can be
shown to be independent of any unknown parameters, the Type I error can always
be evaluated in the context of a particular model by Monte Carlo methods (to any
desired degree of accuracy).

It is useful to explore the finite sample properties in the case p=2, i.e.
ol=h(a; +a5z,,), in some detail. The LM statistic is then

LM:%[; (Zz,:—fz)z]_l[z (Zz.x—fz)ft]z

2

1 -1
=5[Z(22,1_52)2] [2(22.:—52)&]
t
=(a'Da/a'a)’
where 7, =N"'3,z,, d=(d1,...,0n), and D is a diagonal matrix with ith
t

diagonal element {N(z2,;—2,)/[2 2,(z2., — %, fori=1,..., N. Thus for any
c>0,

pr{LM>c}=pr{d'Di/d'i >} +pr{a'Dii/i'i < —c.

Because each of these terms involves the ratio of quadratic forms in normal
variables, Imhof’s procedure [13] might be used to compute the exact prob-
abilities (see Koerts and Abrahamse [14], for a good discussion of this). The
disadvantage with this method is that it does not extend beyond p =2 and an
alternative that covers any p is desirable. Such an alternative is available by
observing that division of both numerator and denominator by o does not affect
LM but results in & being a linear transformation of the standard normal deviates
o 'u,. Thus, assuming an investigator has computed a value of LM = ¢ from some
model, the exact probability of a Type I error for this value can be estimated by (a)
generating n sets of N observations on an n.i.d.(0, 1) variable ¢,, (b) forming the
statisticasin (3) using & = (I - X(X'X)' X", (c) observing the number of times,
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r, that LM > ¢ in these n sets, (d) using r/n as the estimate of the probability of a
Type I error. The difference between r/n and the exact probability tends to zero as
n->00, so that this difference can be made arbitrarily small with high probability,
and good results seem likely for n=5000. Although this may seem expensive it
should be borne in mind that, even when p =2 and Imhof’s method is available,
exact computation via inversion of the characteristic function involves two
numerical integrations, and these also exhibit errors that may be as high as those
from simulation if the truncation point is too small or the grid is too large.

Even though there is a way of computing the exact probability of Type I errors
for the statistic, it seems likely that most researchers would only use this if the
computed LM lay near the critical 5 per cent or 10 per cent significance points of
the x>-, and it therefore seems worthwhile assessing the adequacy of such a
strategy for p =2 with a particular set of data. Such a choice also enables a
comparison of the simulation and Imhof methods, both in terms of accuracy and
computational cost. Essentially, there are three important questions to be asked
concerning the small sample distribution: How adequate is the y> approximation
as an indicator of significance levels? What is the power of the test statistic to
reject a false null hypothesis of homoscedasticity? How robust is the test to a
misspecified model? In the following experiments attention is centered upon the
first two questions.

Rutemiller and Bowers [19] investigated heteroscedasticity in two regression
models and it was decided to select the data from these models (but not the same
heteroscedastic model) for the experiments. Model I utilizes the “radio set” data
while Model IT works with the ‘““auto stopping distance” data. Accordingly, there
are a maximum of forty-nine observations for Model I and sixty-three for Model
II.

Having selected the data it is necessary to decide on a form for the hetero-
scedast1c1ty The random coefficient model y,=a +Bx,+u, B, = B+e,, which
1mp11es a-, = (ru + x, Uey was selected so that z, , in our experiments will always be
x7. The null hypothesis that o2 =0 is an interesting one as the value lies on the
boundary of the parameter space and, as Chernoff [4] pointed out, the likelihood
ratio test would not be ,\/ in such a situation. However as Chant [3] observes, in
this non-standard situation the LM statistic will be x*in large samples.

Table I records the predicted probability of Type I error from the asymptotic
theory (column 1) and the exact probabilities for various sample sizes for the two
models.

From Table I the adequacy of the asymptotic theory to indicate correct
significance levels is rather suspect. Certainly, it would appear that investigators
might need to use fairly conservative significance levels. Because of this diver-
gence of asymptotic predictions and small sample results, we examined the ability
of the simulation method to provide the user with good approximations to the true
probability of Type I error. Table II contains a comparison of the exact prob-
abilities generated by the Imhof method with those from the simulation method
(TIME is the C.P.U. time in seconds for computing the whole column on a
UNIVAC 1142).
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TABLE I

PROBABILITY OF TYPE ¥ ERRORS FOR VARIOUS
SAMPLE SIZES

Model I Model II
N=o N=20 N=40 N=49 N=20 N=40 N =60
7 691 .698 710 .701 .690 .695
.5 .449 460 487 497 484 .490
4 312 324 .362 .393 .381 .388
3 172 .183 .229 .287 .280 .286
2 .058 .066 .104 .180 .180 .185
.1 .018 .022 .033 .078 .084 .088
.05 .010 .013 .021 .034 .040 .042
.02 .005 .008 .012 .013 .016 .017
.01 .003 .005 .009 .007 .008 .009
.005 .002 .004 .006 .004 .005 .005
TABLE II

SIMULATION AND IMHOF METHODS FOR
EVALUATING PROBABILITIES, MODEL I

N=20 N=40
SIM IMHOF SIM IMHOF

.6970 .6906 7204 7096
4594 4488 4834 4873
3212 3121 .3608 .3620
1756 1720 2230 2293
.0536 .0579 .1034 .1041
.0192 .0179 .0352 .0330
.0106 .0101 .0222 .0207
.0048 .0050 .0126 .0123
.0024 .0031 .0088 .0086
.0016 .0019 .0064 .0062

Time 34.5 71.4 92.0 703.3

Assuming that the Imhof method yields the exact probabilities it is seen that the
simulation method provides a reliable guide to the evaluation of these in any
applied situation—certainly errors are minor compared to those from the use of
the asymptotic theory. It is of interest to note that the simulation method, based
on 5000 replications, was considerably faster than the Imhof method.

To assess the power of the statistic it is necessary to specify particular numerical
values for the ratio a»/a; (i.e., o2/a2). Because the model being investigated is a
random coefficient one, it seemed sensible to relate power to the coefficient of
variation (CV) of B, i.e., o./B. By choosing o2 =0.3 and B as 0.66 for Model II
(roughly the OLS estimates), o was found for values of CV of 0.1, 1.0, and 10.0,
these constituting a reasonable range of randomness in B, Table III records the
rejection probabilities of the test statistic for the 10 critical values of Table I, as
the CV and sample size change.’

5 The tabulated figures differ from power because of the variations in Type I error levels given in
Table I.
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From Table III it appears that, at least for the range of the CV considered,
sample size is the main determinant of power and this is acceptable for sample
sizes of forty and above, for those significance levels most commonly in use, i.e., 5
per cent and 10 per cent.

TABLE III
POWER CALCULATIONS FOR MODEL II

N=20 N=40 N=60
CV=01 CV=10 CV=100 CV=01 CV=10 CV=100 CV=01 CV=1.0 CV=10.0
935 943 0.944 0.995 0.996 0.996 1.000 1.000 1.000
.879 .893 0.895 0.988 0.990 0.990 0.999 1.000 1.000
.842 .859 0.861 0.982 0.984 0.985 0.999 0.999 0.999
.793 .815 0.817 0.971 0.974 0.975 0.998 0.998 0.999
725 750 0.752 0.950 0.955 0.956 0.996 0.997 0.997
.608 .637 0.640 0.900 0.909 0.910 0.989 0.991 0.991
498 528 0.531 0.835 0.848 0.849 0.977 0.980 0.981
.369 398 0.401 0.734 0.751 0.753 0.952 0.958 0.958
.288 313 0.316 0.653 0.673 0.672 0.925 0.933 0.934
220 .242 0.245 0.573 0.592 0.594 0.891 0.902 0.903

4. COMMENTS AND CONCLUSION

1. Although the statistic can be employed only when an alternative is specified,
its derivation suggests that the quantity g, = #7/6 is of some importance in tests
of heteroscedasticity. Thus, if one is going to plot any quantity—a strategy
sometimes recommended—it would seem to be more reasonable to plot g, than
quantities such as i,.

2. The test statistic is easily extended to systems of equations and in some
circumstances can be expressed in a simpler form, e.g., if it is assumed that there is
adiscrete change in o after n observations, as is common in many cross-sectional
studies, then z,, would be unity from 1 to n and zero elsewhere, from which the
statistic becomes

1I[ N T 2
LM_Z[n(N—n)][Z,: (6-2> n] ’
This essentially involves a comparison of the residual sum of squares over the first
n periods and the total sample. Unfortunately, even in this special case the
distribution of the statistic does not appear tractable analytically.

3. Finally, there is the question of the power of the test statistic versus (say) the
likelihood ratio (LR) statistic, i.e., even if the LM statistic did not have good power
in small samples, it may be no worse than others and its computational ease might
make it more attractive (in the same way that the Durbin 4 statistic is more
attractive than the LR test). Although Peers [17] has demonstrated that the LM



1294 T. S. BREUSCH AND A. R. PAGAN

test was biased to O(N %), it was impossible to predict which would be the more
powerful of the test statistics, and this question probably needs to be taken up in
further research.

University of Southampton
and
Australian National University

Manuscript received March, 1977; final revision received October, 1978.

REFERENCES

[1] AITCHISON, J., AND S. D. SILVEY: ‘*‘Maximum-Likelihood Estimation and Associated Tests of
Significance,” Journal of the Royal Statistical Society, Series B, 22 (1960), 154-171.
[2] AMEMIYA, T.: “A Note on a Heteroscedastic Model,” Journal of Econometrics, 6 (1977),
365-370.
[3] CHANT, D.: “On Asymptotic Tests of Composite Hypotheses in Nonstandard Conditions,”
Biometrika, 61 (1974), 291-298.
[4] CHERNOFF, H.: “On the Distribution of the Likelihood Ratio,” Annals of Mathematical
Statistics, 25 (1954), 573-578.
[5] DURBIN, J.: “Testing for Serial Correlation in Least-Squares Regression When Some of the
Regressors are Lagged Dependent Variables,” Econometrica, 38 (1970), 410-421.
[6] GEARY, R. C.: **A Note on Residual Heterovariance and Estimation Efficiency in Regression,”
American Statistician, 20 (1966), 30-31.
[7] GLEJSER, H.: “A New Test for Heteroskedasticity,” Journal of the American Statistical
Association, 64 (1969), 316-323.
[8] GOLDFELD, S. M., AND R. E. QUANDT: ‘‘Some Tests for Homoscedasticity,” Journal of the
American Statistical Association, 60 (1965), 539-547.
[9] : Nonlinear Methods in Econometrics. Amsterdam: North-Holland, 1972.
[10] HARVEY, A. C.: “Estimating Regression Models with Multiplicative Heteroscedasticity,”
Econometrica, 44 (1976), 461-466.
[11] HILDRETH, C., AND J. P. Houck: “Some Estimators for a Linear Model with Random
Coefficients,” Journal of the American Statistical Association, 63 (1968), 584-595.
[12] GOLDBERGER, A. S.: Econometric Theory. New York: John Wiley and Sons, 1964.
[13] IMHOF, J. P.: “Computing the Distribution of Quadratic Forms in Normal Variables,”
Biometrika, 48 (1961), 419-426.
[14] KOERTS, J., AND A. P.J. ABRAHAMSE: On the Theory and Application of the General Linear
Model. Rotterdam: Universitaire Pers Rotterdam, 1969.
[15] LANCASTER, T.: “Grouping Estimators on Heteroscedastic Data,”” Journal of the American
Statistical Association, 63 (1968), 182-191.
[16] PARK, R. E.: “Estimation with Heteroscedastic Error Terms,”" Econometrica, 34 (1966), 888.
[17] PEERS, H. W.: “Likelihood Ratio and Associated Test Criteria,”” Biometrika, 58 (1971),
577-587.
[18] RAO, C.R.: Linear Statistical Inference and Its Applications, 2nd Ed. New York: John Wiley and
Sons, 1973.
[19] RUTEMILLER, H. C.,, AND D. A. BOWERS: “‘Estimation in a Heteroscedastic Regression
Model,” Journal of the American Statistical Association, 63 (1968), 552-557.
[20] SILVEY, S. D.: *“The Lagrangian Multiplier Test,”” Annals of Mathematical Statistics, 30 (1959),
389-407.
[21] SwaMy, P. A. V. B., AND J. S. MEHTA: ‘‘Bayesian and Non-Bayesian Analysis of Switching
Regressions and of Random Coefficient Regression Models,” Journal of the American
Statistical Association, 70 (1975), 593-602.




