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Summary The nonlinear fixed-effects model has two shortcomings, one practical and one
methodological. The practical obstacle relates to the difficulty of computing the MLE of the
coefficients of non-linear models with possibly thousands of dummy variable coefficients. In
fact, in many models of interest to practitioners, computing the MLE of the parameters of
fixed effects model is feasible even in panels with very large numbers of groups. The result,
though not new, appears not to be well known. The more difficult, methodological issue is
the incidental parameters problem that raises questions about the statistical properties of the
ML estimator. There is relatively little empirical evidence on the behaviour of the MLE in the
presence of fixed effects, and that which has been obtained has focused almost exclusively on
binary choice models. In this paper, we use Monte Carlo methods to examine the small sample
bias of the MLE in the tobit, truncated regression and Weibull survival models as well as the
binary probit and logit and ordered probit discrete choice models. We find that the estimator in
the continuous response models behaves quite differently from the familiar and oft cited results.
Among our findings are: first, a widely accepted result that suggests that the probit estimator
is actually relatively well behaved appears to be incorrect; second, the estimators of the slopes
in the tobit model, unlike the probit and logit models that have been studied previously, appear
to be largely unaffected by the incidental parameters problem, but a surprising result related to
the disturbance variance estimator arises instead; third, lest one jumps to a conclusion that the
finite sample bias is restricted to discrete choice models, we submit evidence on the truncated
regression, which is yet unlike the tobit in that regard—it appears to be biased towards zero;
fourth, we find in the Weibull model that the biases in a vector of coefficients need not be in the
same direction; fifth, as apparently unexamined previously, the estimated asymptotic standard
errors for the ML estimators appear uniformly to be downward biased when the model contains
fixed effects. In sum, the finite sample behaviour of the fixed effects estimator is much more
varied than the received literature would suggest.

Keywords: Panel data, Fixed effects, Computation, Monte Carlo, Tobit, Truncated
regression, Bias, Finite sample.

1. INTRODUCTION

In the analysis of panel data with nonlinear models, researchers often choose between a random
effects and a fixed effects specification. The random effects model requires an unpalatable
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orthogonality assumption—consistency requires that the effects be uncorrelated with the included
variables. The fixed effects model relaxes this assumption but the estimator suffers from the
‘incidental parameters problem’ analysed by Neyman and Scott (1948) (see, also, Lancaster
2000). The maximum likelihood estimator (MLE) is inconsistent in the presence of fixed effects
when T , the length of the panel is fixed. In the models that have been examined in detail, it appears
also to be biased in finite samples. How serious these problems are in practical terms remains
to be established—there is only a very small amount of received empirical evidence and very
little theoretical foundation (see, e.g. Maddala 1987; Baltagi 2000). Impressions to the contrary
notwithstanding, Neyman and Scott did not establish that the MLE would generally be biased in
a finite sample; they found as a side result in their analysis of asymptotic efficiency that the MLE
of the variance in a fixed effects regression model had an exact expectation that was (T − 1)/T
times the true value. They provided no general results on small T bias. The only received analytic
results in this regard are those for the binomial logit model established by Kalbfleisch and Sprott
(1970), Anderson (1973), Hsiao (1996) and Han (2002). Some quite general results are suggested
in Hahn and Newey (2002), but no firm conclusions about the bias in question here are reached.
Other results on this phenomenon are based on Monte Carlo studies of binary choice estimators
(see, e.g. Heckman 1981a; Katz 2001).

There is an extensive literature on semi-parametric and GMM approaches for some panel
data models with latent heterogeneity (see, e.g. Manski 1987; Honoré 1992; Charlier et al. 1995;
Chen et al. 1999; Honoré and Kyriazidou 2000; Honoré and Lewbel 2002). Among the practical
limitations of these estimators is that, although they provide estimators of the primary slope
parameters, they usually do not provide estimators for the full set of model parameters and thus
preclude computation of marginal effects, probabilities or predictions for the dependent variable.
(Indeed, some estimation techniques which estimate only the slope parameters and only ‘up to
scale’ provide essentially only information about signs of coefficients and classical (‘yes or no’)
statistical significance of variables in the model.) In contrast, the ML estimator is a full information
estimator that, under its assumptions, provides results for all model parameters including the
parameters of the heterogeneity. In spite of its shortcomings, the fixed effects estimator has some
virtues which suggest that it is worth a detailed look at its properties. This study will examine the
behaviour of the ML estimator in a variety of nonlinear models.

Most of the results in the literature are qualitative in nature. One widely cited piece of empirical
evidence is Heckman’s (1981b) Monte Carlo study of the probit model in which he found that
the small sample bias of the estimator appeared to be surprisingly small. However, his study
examined a very narrow range of specifications, focused only on the probit model and did not,
in fact, examine a fixed effects model. Heckman analysed the bias of the fixed effects estimator
in a random effects model—his analysis included the orthogonality assumption noted earlier.
In spite of its wide citation, Heckman’s results are of limited usefulness for the case in which
the researcher contemplates the fixed effects estimator precisely because the assumptions of the
random effects model are inappropriate. Moreover, our results below are sharply at odds with
Heckman’s (even with his specification).

Analysis of the MLE in the presence of fixed effects has focused on binary choice models.1

The now standard result is that the estimator is inconsistent and substantially biased away from
zero when group sizes are small, with a bias that diminishes with increasing group size. We

1The model has been studied intensively in the recent literature. A partial list of only the most recent studies of the probit
model includes Arellano and Honoré (2001), Cerro (2002), Chen et al. (1999), Hahn (2001), Katz (2001), Laisney and
Lechner (2002), Lancaster (1999) and Magnac (2002). A study of the Cox model for duration data is Allison (2002).
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will consider some additional aspects of the estimator. First, the two binary choice estimators that
have been examined heretofore are narrow cases. Recent research has been based on an increasing
availability of high quality panel data sets and on models that extend well beyond binary choice.
There is little received evidence on the behaviour of the MLE in other fixed effects models. We
will focus on three, the tobit and truncated regression models for limited dependent variables and
the Weibull model for survival (duration) data. In the case of the tobit model, a surprising result
emerges that would be overlooked by the conventional focus on slope estimators. In brief, the slope
estimators in the tobit model appear not to be affected by the incidental parameters problem. But
the problem shows up elsewhere, in the estimated disturbance variance. The truncated regression
model behaves quite differently. In this case, both the slopes and the variance are attenuated. No
general pattern can be asserted, however. In the Weibull model, two slope coefficient estimators
appear to be biased in opposite directions.

This study is organized as follows. We begin in Section 2 with a general specification for
nonlinear models with fixed effects. Save for a few well-known cases, the potentially huge number
of parameters presents a practical problem for estimation of this model. In these few cases, it is
possible to condition the constants out of the model, and base estimation of the main parameters
on the conditional likelihood. In most cases, this is not possible; for ML estimation, all parameters
must be estimated simultaneously. Though it appears not to be widely known, in most cases, it
is actually possible to estimate the full parameter vector even in models for which there is no
conditional likelihood which is free of the nuisance parameters. Some details on computation of
the estimator are sketched in Section 2. Section 3 contains two Monte Carlo studies of the MLE
in fixed effects models. We first revisit Heckman’s (1981b) study of the probit model as well as
the other familiar result, that for the binary logit model. Another discrete choice model that has
not been examined previously, the ordered probit model, is examined here as well. An additional
question considered in this study has not been addressed previously. Given that the fixed-effects
estimator is problematic, is it best to ignore the heterogeneity, use a random-effects estimator,
or use the fixed-effects estimator in spite of its shortcomings? The second study considers the
tobit and truncated regression models and the Weibull model for censored duration data. Here,
we are interested not only in the slope estimators, but the variance estimator and the estimators
of marginal effects. We will also examine the estimated standard errors of the MLE in the fixed
effects models. Some conclusions are drawn in Section 4.

The end result of this study is that the fixed effects estimator displays a much greater variety
of behaviour than suggested in the received literature. Some of the main conclusions of this paper
are as follows: First, for the models examined here, the scepticism about the ML estimator in the
fixed effects models is broadly appropriate. We find that for a wider range of cases for the models
than have already been examined in the literature, the estimator is indeed biased, and in a few
instances, substantially so even when T is fairly large. Second, Heckman’s encouraging results
for the probit model appear to be incorrect. Third, ignoring heterogeneity (in a probit model)
is not necessarily worse than using the fixed effects estimator to account for it. But using the
random effects estimator is worse. Fourth, the slope estimators in the tobit model do not appear
to be affected by the incidental parameters problem. This is an unexpected result, but it must be
tempered by a finding that the variance estimator is so affected. The variance estimator in the tobit
model is a crucial parameter for inference and analysis purposes. On the other hand, the bias in
the variance estimator appears to fall fairly quickly with increasing T . Even given this additional
result, one must look a bit more closely. The estimators of the marginal effects in the tobit model
appear to be much less biased than one might expect. We also find that in cases in which the
expected biases in the slope estimators do emerge, it is away from zero, but at the same time, the
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estimated standard errors appear to be biased towards zero. Fifth, the truncated regression model
and Weibull models display various patterns that would not be predicted by already received
results.

2. THE FIXED EFFECTS MODEL AND ESTIMATOR

We consider a class of nonlinear index function models defined by the density for an observed
random variable, yit,

f (yit | xi1, xi2, . . . , xi,T i ) = g(yit , β
′xi t + αi , θ ), i = 1, . . . , N , t = 1, . . . , Ti ,

where β is the vector of slopes, α i is the individual effect, θ is a vector of ancillary parameters
such as a disturbance standard deviation, an over-dispersion parameter in the Poisson model or
the threshold parameters in an ordered probit model, i indexes groups or individuals and Ti is
the possibly varying number of observations on each individual. The essential ingredient of this
analysis is the individual effect which, we note, enters the index function linearly along with
the other variables. We will leave for future research models with dynamic effects; yi ,t−1 does
not appear on the right-hand side of the equation. See, for example, Arellano and Bond (1991),
Arellano and Bover (1995), Ahn and Schmidt (1995), Orme (1999), Heckman (1978, 1981a),
Heckman and MaCurdy (1981), Lancaster (2000), Arellano (2001), Hahn (2001), Honoré and
Kyriazidou (2000) and models in which the individual effect enters nonlinearly elsewhere in
the model (which, save for some special cases—e.g. Hausman et al.’ (1984) negative binomial
model—appear generally to be intractable). The fixed-effects model presents two disadvantages.
In a few cases, it is possible to condition the possibly large number of constants out of the model,
and base estimation of β and θ on a conditional likelihood. But in most cases, this is not possible;
for maximum likelihood estimation, all parameters must be estimated simultaneously. (There are
no general results. Lancaster (2000) catalogues those which have been derived.) Though it appears
not to be widely known, as discussed below, in most cases, it is actually possible to compute the
full parameter vector even in models for which there is no conditional likelihood that is free of
the nuisance parameters. Moreover, with fixed group sizes, T , there appears to be a significant
small sample bias in the estimator. The familiar evidence in this regard is limited to the probit and
logit models. (We find, in passing, that the same effect is observed in the ordered probit model.)
We will examine the effect further in the context of three models that have continuous and mixed
continuous/discrete dependent variables, the Weibull duration and tobit and truncated regression
models. Our results are considerably different from the familiar findings. We will also examine
the behaviour of the estimator of the asymptotic standard errors for the slope estimators.

2.1. Computation of the fixed effects maximum likelihood estimator

The log likelihood for a sample of N repeated observations on group i is

log L=
N∑

i=1

[
Ti∑

t=1

log g(yit , β
′xi t + αi , θ )

]
.

The likelihood equations for β, θ , and α = [α1, . . . , αN]′,

∂ log L/∂[β ′, θ ′, α′]′ = 0,
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generally do not have explicit solutions for the parameter estimates in terms of the data and must
be solved iteratively. In principle, maximization can proceed simply by creating and including
a complete set of dummy variables in the model. But the proliferation of nuisance (incidental)
parameters (constant terms), which increase in number with the sample size, ultimately renders
conventional gradient-based maximization of this log likelihood infeasible.

2.2. Conditional estimation

In the linear case, regression using group mean deviations sweeps out the fixed effects. The K
slope parameters are estimated by within-group least squares, a computation of order K, not N.
A few analogous cases of nonlinear models have been developed, such as the binomial logit
model,

g(yit , β
′xi t + αi ) = 	[(2yit − 1)(β ′xi t + αi )],

where 	(z) = exp(z)/[1 + exp(z)]. (See Chamberlain 1980; Rasch 1960; Krailo and Pike 1984;
Greene 2003, Ch. 21 for details.) In this case, 
 t yit is a minimal sufficient statistic for α i, and
estimation in terms of the conditional density provides a consistent estimator of β. Three other
commonly used models that have this property are the Poisson and negative binomial regressions
for count data (see Hausman et al. 1984;2 Cameron and Trivedi 1998; Allison 2000; Lancaster
2000; Blundell et al. 2002) and the exponential regression model for a continuous non-negative
variable,

g(yit , β
′xi t + αi ) = (1/λi t ) exp(−yit/λi t ), λi t = exp(β ′xi t + αi ), yit ≥ 0,

(see Munkin and Trivedi 2003). In all these cases, the conditional log likelihood,

log Lc =
N∑

i=1

log f
(
yi1, yi2, . . . , yi,Ti

∣∣
Ti
t=1 yit , xi1, xi2, . . .

)
,

is a function of β but not α, which provides a feasible estimator of the parameters that is free of
the nuisance parameters.3 In most cases of interest to practitioners, including, for examples, those
based on transformations of normally distributed variables such as the probit, tobit and truncated
regression models, this method will be unusable.

2.3. Two-step estimation

Heckman and MaCurdy (1981) suggested a ‘zig-zag’ sort of approach to maximization of the
log likelihood, dummy variable coefficients and all. Consider the probit model. For known set of
fixed effect coefficients, α = (α1, . . . , αN)′, estimation of β is straightforward. The log likelihood

2But see Allison (2000) for documentation of an ambiguity in the Hausman et al. formulation of the negative binomial
model.

3Lancaster (2000) lists several cases in which the parameters of the model can be ‘orthogonalized’, that is, transformed
to a form α∗

i (α, β) and β such that the log likelihood re-parameterized in terms of these parameters is separable. The
concentrated likelihood for the Poisson is an easily derived example. As he notes, there is no general result which produces
the orthogonalization, and the number of cases is fairly small.
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conditioned on these values (denoted ai), would be

logL | a1, . . . , aN =
N∑

i=1

Ti∑
t=1

log �[(2yit − 1)(β ′xi t + ai )].

This can be treated as a cross-section estimation problem since with known α, there is no
connection between observations even within a group. With given estimate of β (denoted b)
the conditional log likelihood for each α i,

logLi | b =
Ti∑

t=1

log � [(2yit − 1)(zit + αi )] ,

where zit = b′xit is now a known function. Maximizing this function for each i is straightforward.
Heckman and MaCurdy suggested iterating back and forth between these two estimators until
convergence is achieved.4

It is uncertain that this approach will locate the global maximum likelihood estimator (see
Oberhofer and Kmenta 1974). Whether it produces a consistent estimator in the dimension of N
(i.e. of β) even if T is large, depends on the initial estimator being consistent, and it is unclear how
one should obtain that consistent initial estimator.5 Irrespective of its probability limit (and of
other biases to be discussed below), the estimated standard errors for the estimator of β will be too
small because the Hessian is not block diagonal. The estimator at the β step does not obtain the
correct sub-matrix of the information matrix. The approach does highlight an important aspect
of the MLE in some fixed effects models when T is small (the problem usually becomes less
prevalent when T increases). For the binary choice setting, in any group in which the dependent
variable is all ones or all zeros, there is no MLE for α i—the likelihood equation for log Li has no
solution if there is no within group variation in yit. This feature of the model carries over to the
tobit and binomial logit models, as the authors noted and to Chamberlain’s conditional logit model
and the Hausman et al. estimator of the Poisson model.6 In the Poisson and negative binomial
models cases, any group which has yit = 0 for all t contributes a zero to the log likelihood so its
group-specific effect is not identified.

2.4. Full maximum likelihood estimation

Maximization of the log likelihood function can, in fact, be done by ‘brute force’, even in the
presence of possibly thousands of nuisance parameters. The strategy, which uses some well-
known results from matrix algebra, is described in Prentice and Gloeckler (1978) (who attribute
it to Rao 1973; Chamberlain 1980, p. 227; Sueyoshi 1993 and Greene 2003). No generality is
gained by treating θ separately from β, so at this point, we will simply collect them in the single

4Polachek and Yoon (1994, 1996) applied this approach to the stochastic frontier model. See, also, Hall (1978), Borjas
and Sueyoshi (1993), Berry et al. (1995), Petrin and Train (2002) and Greene (2002, 2003).

5Polachek and Yoon’s (1996) application to a stochastic frontier model is based on an initial consistent estimator, OLS, so
in their case, the consistency issue must be treated differently. In fact, however, though their initial estimator is consistent,
subsequent iterates are not, since they are functions of the estimated fixed effects.

6This is not, however, an issue in all cases. For example, in the linear regression model, within-group variation in the
dependent variable is not required for estimation of the individual constant term. In the Poisson model, estimation of α i

requires only that at least one yit differ from zero.

C© Royal Economic Society 2004



104 William Greene

K × 1 parameter vector γ = [β ′, θ ′]′. Denote the gradient and Hessian of the log likelihood by

gγ = ∂ log L

∂γ
=

N∑
i=1

Ti∑
t=1

∂ log g(yit , xi t , γ, αi )

∂γ
,

gαi = ∂ log L

∂αi
=

Ti∑
t=1

∂ log g(yit , xi t , γ, αi )

∂αi
,

gα = [gα1, . . . , gαN ]′,

g = [g′
γ , g′

α]′,

H =




Hγ γ hγ 1 hγ 2 · · · hγ N

h′
γ 1 h11 0 · · · 0

h′
γ 2 0 h22 · · · 0

...
...

...
. . . 0

h′
γ N 0 0 0 hN N




,

where

Hγ γ =
N∑

i=1

Ti∑
t=1

∂2 log g(yit , xi t , γ, αi )

∂γ ∂γ ′ ,

hγ i =
Ti∑

t=1

∂2 log g(yit , xi t , γ, αi )

∂γ ∂αi
,

hii =
Ti∑

t=1

∂2 log g(yit , xi t , γ, αi )

∂α2
i

.

Newton’s method for computation of the parameters will use the iteration(
γ̂

α̂

)
k

=
(

γ̂

α̂

)
k−1

− H−1
k−1gk−1 =

(
γ̂

α̂

)
k−1

+
(

�γ

�α

)
k−1

.

By taking advantage of the sparse nature of the Hessian, this can be reduced to a computation that
involves only K × 1 vectors and K × K matrices (for simplicity, the iteration number is dropped
at this point),

�γ = −
[

Hγ γ −
N∑

i=1

(
1

hii

)
hγ i h′

γ i

]−1 (
gγ −

N∑
i=1

gαi

hii
hγ i

)

= −Hγ γ (gγ − HγαH−1
ααgα)

and

�αi = − 1

hii
(gαi + h′

γ i�γ ).
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In all the models examined here, the log likelihood, even in the presence of the individual effects,
is globally concave, so there is no need to examine second order conditions for the maximization
procedure. (This result is established in a number of places, e.g. Olsen (1978) and Greene (2003).)

For a single index model, g(yit, β ′xit + α i), with no ancillary parameters, such as the probit,
logit, Poisson or exponential model, this can be written in the convenient form

�γ =
[

N∑
i=1

Ti∑
t=1

ψi t (xi t − x̄i ) (xi t − x̄i )

]−1 [
N∑

i=1

Ti∑
t=1

δi t (xi t − x̄i )

]

and

�αi =
(

Ti∑
t=1

−δi t/ψi .

)
+ x̄′

i�γ ,

where

δi t = ∂ log g(yit , β
′xi t + αi )/∂αi ,

ψi t = ∂2 log g(yit , β
′xi t + αi )

/
∂α2

i ,

ψi =
Ti∑

t=1

ψi t

and

x̄i= hγ i/hii =
Ti∑

t=1

ψi t xi t

/ Ti∑
t=1

ψi t .

The estimator of the asymptotic covariance matrix for the slope parameters in the MLE is

Est.Asy.Var[γ̂ M L E ] = −
(

Hγ γ −
N∑

i=1

1

hii
hγ i h′

γ i

)−1

= − Hγ γ .

For the separate constant terms,

Est.Asy.Cov[ai , a j ] = −1(i = j) 1
hii

− 1
hii

1
h j j

h′
γ i

(
Hγ γ ′ −

N∑
i=1

1

hii
hγ i h′

γ i

)−1

hγ j

= −1(i = j)

hii
− h′

γ i

hii
Hγ γ hγ j

h j j
.

For the single index model, this is

Est.Asy.Cov[ai , a j ] = −1(i = j)

ψi
+ x̄′

i Vx̄ j .

Finally,

Est.Asy.Cov[γ̂M L E , ai ] = Est.Asy.Var[γ̂M L E ]
hγ i

hii
= −Vx̄i .
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Each of these involves a moderate amount of computation, but can easily be obtained with
existing software and computations that are linear in N and K. Neither update vector requires
storage or inversion of a (K + N) × (K + N) matrix; each is a function of sums of scalars and
K × 1 vectors of first derivatives and mixed second derivatives. Storage requirements for α and
�α are linear in N, not quadratic. Even for panels of tens of thousands of units, this is well
within the capacity of the current vintage of even modest desktop computers.7 The application
below, computed on an ordinary desktop computer, involves computation of a tobit model with
N = 3,000.

3. SAMPLING PROPERTIES OF THE FIXED EFFECTS ESTIMATOR

If β and θ were known, then, the MLE for α i would be based on only the Ti observations for
group i. This implies that the asymptotic variance for ai is O[1/Ti] and, since Ti is fixed, ai is
inconsistent. The estimator of β will be a function of the estimator of α i, ai ,ML. Therefore, bML,
the MLE of β is a function of a random variable which does not converge to a constant as N →
∞, so neither does bML. There may be a small sample bias as well. Andersen (1973) and Hsiao
(1996) showed analytically that in a binary logit model with a single dummy variable regressor
and a panel in which Ti = 2 for all groups, the small sample bias is +100%. Abrevaya (1997)
shows that Hsiao’s result extends to more general binomial logit models as long as Ti continues to
equal two. Our Monte Carlo results below are consistent with this result. No general results exist
for the small sample bias if T exceeds 2 or for other models. Generally accepted results are based
on Heckman’s (1981b) Monte Carlo study of the probit model with Ti = 8 and N = 100 in which
the bias of the slope estimator was towards zero (in contrast to Hsiao) and on the order of only
10%. On this basis, it is often suggested that in samples at least this large, the small sample bias is
probably not too severe. However, our results below suggest that the pattern of overestimation in
the probit model persists to larger T as well, and Heckman’s results appear to be too optimistic.
Neyman and Scott (1948) are often invoked to assert the extension of this result to other models
as well. In point of fact, Neyman and Scott did not claim any generality for the small sample
bias of the maximum likelihood estimator; they observed it in passing in one narrow case (the
variance of the fixed-effects estimator in a model with no regressors) during the course of their
examination of the asymptotic efficiency of the MLE in the presence of the nuisance parameters.
As we find below, there appears to be no predictable pattern to the sign, or even the presence of
a small sample bias of the fixed-effects estimator.

3.1. Discrete choice models

The experimental design for Heckman’s Monte Carlo analysis of the fixed-effects probit estimator
was as follows:

Yit = στ τi + βzit + εi t , i = 1, . . . , 100, t = 1, . . . , 8,

τi ∼ N[0, 1],

7Sueyoshi (1993) after deriving these results expressed some surprise that they had not been incorporated in commercial
software. As of this writing, it appears that LIMDEP (Econometric Software (2003)) is still the only package that has
done so.
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Table 1. Heckman’s Monte Carlo study of the fixed effects probit estimator.

β = 1.0 β = −0.1 β = −1.0

0.90a −0.10 −0.94

σ τ
2 = 3 1.286b −0.1314 −1.247

1.240c −0.1100 −1.224

0.91 −0.09 −0.95

σ τ
2 = 1 1.285 −0.1157 −1.198

1.242 −0.1127 −1.200

σ τ
2 = 0.5 0.93 −0.10 −0.96

1.213 −0.1138 −1.199

1.225 −0.1230 −1.185
aMean of 25 replications. Reported in Heckman (1981, p. 191).
bMean of 25 replications.
cMean of 100 replications.

zit = 0.1t + 0.5zi,t−1 + Uit , Uit ∼ U[−0.5, 0.5], zi0 = 5 + 10.0Ui0,

εi t ∼ N[0, 1],

yit = 1[Yit > 0].

(The starting value, zi 0, for the sequence zit is given in Nerlove (1971).) Heckman’s results are
summarized in Table 1. For the case of interest here, his results for the probit model with N =
100 and T = 8 suggest, in contrast to the evidence for the logit model, a slight downwards bias
in the slope estimator. The striking feature of his results is how small the bias seems to be even
with T as small as 8.

We have been unable to replicate Heckman’s qualitative results. Both his and our own results
with his experimental design are shown in Table 1. Some of the differences can be explained by
different random number generators. But this would only explain a small part of the strikingly
different outcomes of the experiments and not the direction. In contrast to Heckman, using his
specification, we find that the probit estimator, like the logit estimator, appears to be substantially
biased away from zero when T = 8. Consistent with expectations, the bias is far less than the
100% that appears when T = 2. The table contains three sets of results. The first are Heckman’s
reported values. The second and third sets of results are our computations for the same study.
Heckman based his conclusions on 25 replications. We used the same experimental design to
produce the second row of the table. To account for the possibility that some of the variation is
due to small sample effects, we redid the analysis using 100 replications. The results in the second
and third row of each cell are strongly consistent with the familiar results for the logit model and
with our additional results discussed below. The bias in the fixed-effects estimator appears to be
quite large, and, in contrast to Heckman’s results, is away from zero in all cases. The relative bias
does not appear to be a function of the parameter value.

There is a noteworthy feature of the design of the foregoing experiment. The underlying
model is actually a random-effects model; it does not incorporate correlation between the effects,
τ i, and the included variables, zit. One might view this as a most favorable case inasmuch as
the ‘problem’ of fixed effects arises because of this correlation. Nonetheless, we still find, in
contrast to Heckman, that even in this instance, the MLE is substantially biased, and away from
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zero. We would expect less favorable settings (greater correlation) to produce even less optimistic
conclusions. We do note, however, that if the researcher knows that the effects are not correlated
with the included variables, then a random effects approach should be preferable, and the issue at
hand becomes whether the normal distribution typically assumed is a valid assumption and what
are the implications if it is not.

We will examine the behaviour of the estimator in somewhat greater detail. We are interested
in whether Hsiao’s result carries over to other models, and how Heckman’s results change when
T is not equal to 8. We will examine several index function models, the binomial logit, binomial
probit, ordered probit, tobit, truncated regression and Weibull models. (The continuous choice
models are considered in the next section.) The experiment is designed as follows: All models
are based on the same index function

wi t = αi + βxit + δdit ,

where β = δ = 1,

xit ∼ N[0, 1]

dit = 1[xit + hit > 0]

where hit ∼ N[0, 1]

αi =
√

T x̄i + ai , ai ∼ N [0, 1].

In all cases, we estimate the two coefficients on xit and dit, where both coefficients equal 1.0, and
the fixed effects (which are not used or presented below). The correlations between the variables
are approximately 0.7 between xit and dit , 0.4 between α i and xit and 0.2 between α i and dit.
(The random term hit is used to produce independent variation in dit.) The individual effect is
produced from independent variation, ai as well as the group mean of xit. The latter is scaled by√

T to maintain the unit variance of the two parts—without the scaling, the covariance between
α i and xit falls to zero as T increases and x̄i converges to its mean of zero). Finally, the series xit is
generated without any within group correlation (in contrast to Heckman). In further experiments
(not reported) in another study (Greene 2004), we found that the marginal process that produces
the values of xit had little or no influence on the results of the analysis—the impact of the incidental
parameters problem appears to arise from other sources. Note that the model differs from that
specified in Hausman and Taylor (1981) and Breusch et al. (1989) in that the effects are correlated
with all of the independent variables. Thus, there is no instrumental variable estimator based on
the group means available within the model itself.

The data-generating processes examined here are as follows:

probit: yit = 1[wi t + εi t > 0],

ordered probit: yit = 1[wi t + εi t > 0] + 1[wi t + εi t > 3],

logit: yit = 1[wi t + vi t > 0], vi t = log[uit/(1 − uit )],

where ε it ∼ N[0, 1] denotes a draw from the standard normal population and uit ∼ U[0, 1] denotes
a draw from the standard uniform population. Models were fit with T = (2, 3, 5, 8, 10, 20) and with
N = (100, 500, 1,000). (Note that this includes Heckman’s experiment.) Each model specification,
group size, and number of groups was fit 200 times with random draws for ε it or uit. For purposes
of our analysis, we based conclusions on the N = 1,000 experiments. The conditioning data, xit,
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Table 2. Means of empirical sampling distributions, N = 1,000 individuals based on 200 replications.

T = 2 T = 3 T = 5 T = 8 T = 10 T = 20

β δ β δ β δ β δ β δ β δ

Logit Coeff 2.020 2.027 1.698 1.668 1.379 1.323 1.217 1.156 1.161 1.135 1.069 1.062

Logit M.E.a 1.676 1.660 1.523 1.477 1.319 1.254 1.191 1.128 1.140 1.111 1.034 1.052

Probit Coeff 2.083 1.938 1.821 1.777 1.589 1.407 1.328 1.243 1.247 1.169 1.108 1.068

Probit M.Ea. 1.474 1.388 1.392 1.354 1.406 1.231 1.241 1.152 1.190 1.110 1.088 1.047

Ord. Probit 2.328 2.605 1.592 1.806 1.305 1.415 1.166 1.220 1.131 1.158 1.058 1.068
aAverage ratio of estimated marginal effect to true marginal effect.

dit and α i were held constant—the replications were produced over the disturbances, ε it, and uit.
(Regenerating the conditioning data, α i, xit and dit with each replication did not produce any
changes in the behaviour of the MLE.) The full set of parameters, including the dummy variable
coefficients, is estimated using the results given earlier. For each of the specifications listed,
properties of the sampling distribution are estimated using the 200 observations on β

and δ.8

Table 2 lists the means of the empirical sampling distribution for the three different discrete
choice estimators for the samples of 1,000 individuals. At this point, we are only interested in
the mean of the sampling distribution as a function of T , so we use only the results based on the
largest (N) samples. The bias of the MLE in the binary and ordered choice models is large and
persistent. Even at T = 20, we find substantial biases. With T = 2, the Anderson/Hsiao result is
clearly evident, even more so in the ordered probit model. Increasing the sample size (N) from
100 to 1,000 did nothing to remove this effect, but the increase in group size (T) from 2 to 20 has a
very large effect. We conclude that this is a persistent bias which can, indeed, be attributed to the
‘small T problem’. The results for the probit model with T = 8 are the counterparts to Heckman’s
results. The biases in Table 2 are quite unlike those in his study. The ordered probit model,
which has not been examined previously, shows the same characteristic pattern as the binomial
models.

The focus on coefficient estimation in these models overlooks an important aspect of estimation
in a binary choice model. Unless one is only interested in signs and statistical significance the
relevant object of estimation in the model is the marginal effect, not the coefficient itself. For the
two binary choice models, the marginal effects are

∂ E[yit | αi , xit , dit ]

∂xit
= β f (αi + βxit + δdit )

for the continuous variable xit and

�E[yit | αi , xit , di ] = F(αi + βxit + δ) − F(αi + βxit )

for the dummy variable dit, where f (·) and F(·) denote the density and CDF (normal or logistic),
respectively. These are functions of the data, so there is, in principle, no ‘true’ value to be estimated.
But these are typically computed at the means of the independent variables. Taking this as our

8A similar study over a range of group sizes is carried out for the binary logit model by Katz (2001).
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Table 3. Means and root mean squared errors of fixed effects, random effects and pooled estimators for the
probit model.

T = 3 T = 8

β δ β δ

Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Pooled 0.953 0.671 0.655 0.349 0.797 0.204 0.604 0.397

Random 0.415 0.588 2.629 1.634 0.249 0.752 2.286 1.288

Fixed 1.868 0.909 1.769 0.839 1.332 0.340 1.236 0.262

benchmark, the estimated values would be based on averages of zero for α i and xit and 0.5 for
dit. The ‘true’ marginal effects would be 1 × φ(0 + 1 × 0 + 1 × 0.5) = 0.352 and �(1) −
�(0) = 0.341 for the probit model and 1 × 	(0.5)[1 − 	(0.5)] = 0.235 and 	(1) − 	(0) =
0.231 for the logit model for xit and dit respectively. The estimated values would be obtained by
inserting the estimated coefficients in the preceding expressions. In each case, the overestimated
coefficient acts to increase the multiplier but attenuate the scale factor, so the relationship between
the marginal effects and the coefficients is unclear. The second row of values for the logit and
probit models in Table 2 gives the ratio of what would be the estimated marginal effect to the
‘true’ marginal effects for the logit and probit models. Comparison of the entries suggests that
the biases are comparable for T ≥ 5. However, the first two columns suggest that the commonly
accepted result of a 100% bias when T = 2 substantially overstates the case. The bias is still large,
but well under 100%. In all cases save for the last, the marginal effect is closer to the true value
than the coefficient estimator is to its population counterpart. We do note, these results do not
redeem the estimator. However, they do cast some new light on a long held result, the bias for
T = 2.9

The preceding analysis and its counterpart elsewhere in the literature leaves an open question.
Believing that the fixed effects model is appropriate for their data, but faced with the foregoing
results, the analyst committed to a parametric approach has (at least) three alternatives: use the
fixed effects estimator in spite of the incidental parameters issue, use the random effects estimator,
even though it is, at least in principle, inconsistent, or ignore the heterogeneity and use the pooled
estimator. It is unclear which should be preferred. All three estimators are biased and inconsistent.
Table 3 presents a comparison of these three estimators for the same sample design for the probit
model with T = 3 and T = 8, with N = 1,000. All three estimators were replicated with the same
conditioning data, 200 times. The table lists the sample means and the root mean squared errors
around the true values of 1.0 for β and δ. For which among the three to choose, it is clear that the
random effects estimator is overwhelmingly the worst of the three. It is ambiguous whether one
should use the fixed-effects estimator or pool the data and ignore the heterogeneity. The interesting
result is that while the fixed-effects estimator is biased upwards, the pooled estimator is biased
downwards. For the worse case, T = 3, the bias of the pooled estimator is considerably smaller

9It is possible that some of the variation in the estimated marginal effects is being masked by computing the effect at
the data means rather than averaging the individual marginal effects either at their own data or at some specified value
(this would be the so called ‘average partial effect’. See Wooldridge (2002). In Greene (2004), the probit model is further
examined with a specification similar to this one. Using the same data-generating processes for the data, the counterparts
to the row for the probit model using the averages of the individual marginal effects were (1.375,1.656) for T = 2,
(1.357,1.525) for T = 3, (1.261,1.305) for T = 5, (1.137,1.143) for T = 8 and (1.022,1.019) for T = 20. (The experiments
were not run with T = 10.)
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Table 4. Means of empirical sampling distributions, tobit, truncated regression, and Weibull models, N =
1,000 individuals based on 200 replications.

T = 2 T = 3 T = 5 T = 8 T = 10 T = 20

Tobit model

β 0.991 0.985 0.997 1.000 1.001 1.008

δ 1.083 0.991 1.010 1.008 1.004 1.00

σ 0.644 0.768 0.864 0.914 0.928 0.964

Scale factora 1.13 1.07 1.04 1.02 1.01 1.02

Truncated regression model

β 0.892 0.921 0.955 0.967 0.971 0.986

δ 0.740 0.839 0.888 0.934 0.944 0.973

σ 0.664 0.782 0.869 0.920 0.935 0.968

Scale factora 1.033 1.021 1.006 1.004 1.0003 1.001

Mar.Effectb 0.448 0.457 0.467 0.472 0.474 0.480

Weibull duration model

β 0.706 0.773 0.806 0.832 0.836 0.861

δ 1.284 1.207 1.170 1.128 1.117 1.085

σ 0.512 0.659 0.767 0.826 0.847 0.878
aThe scale factor is used to transform coefficients into marginal effects. The value given is the average ratio of the sample
estimate to the population value.
bAverage value of the estimated marginal effect of xit . Compare to the true value of 0.486.

and the root mean squared error is as well. For T = 3, without question, the pooled estimator is
superior. For T = 8, it is unclear. In this case, the biases are opposite, but comparable. The root
mean squared error for β favours the fixed-effects estimator while that for δ favors the pooled
estimator. Overall, the comparison is unclear. It seems likely based on this and all the preceding
results that for T larger than 8, the results will probably favour the fixed-effects estimator. On the
other hand, it is obvious that the better course when T is very small (between the two problematic
ones) is the pooled estimator. (This might suggest an improved estimator would be a mixture of
the two. However it is unclear what weighting would be appropriate.)

3.2. The tobit, truncated regression and Weibull models

The tobit model was simulated using the same experimental design, with replication

yit = 1[cit > 0]cit , cit = wi t + εi t .

Table 4 presents the simulation results for the tobit model specified above. It appears that the MLE
of the tobit model with fixed effects is not biased at all. The result is all the more noteworthy in
that in each data set, roughly 40–50% of the observations are censored. If none of the observations
were censored, this would be a linear regression model, and the resulting OLS estimator would
be the consistent linear LSDV estimator. But with roughly 40% of the observations censored,
this is a quite unexpected result. However, the average of the 200 estimates of σ—the true value
is also 1.0—shows that the incidental parameters problem shows up in a different place here.
The estimated standard deviation is biased downwards, though with a bias that does diminish
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substantially as T increases. This result is not innocuous. Consider estimating the marginal effects
in the tobit model with these results. In general in the tobit model, for a continuous variable,
δk = ∂E[yi | xi]/∂xik = β k�(β ′xi/σ ) where �(z) is the cdf of the standard normal distribution.
This is frequently computed at the sample means of the data. Based on our experimental design,
the overall means of the variables would be zero for α i and xi and 0.5 for di. Therefore, the scale
factor estimated using the true values of the slope parameters as they are (apparently) estimated
consistently, would be �(0.5/σ̂ ). The ratio of this value computed at the average estimate of σ

to the value computed at σ = 1 (which would be �(0.5) = 0.691) is given in the last row of the
table, where it can be seen that for small T , there is some upwards bias in the marginal effects, but
far less than that in the discrete choice models. On the other hand, at T = 8 (Heckman’s case), all
the components of the tobit model appear to be estimated with little bias in spite of the incidental
parameters issue. It is tempting to invoke Neyman and Scott’s result mentioned earlier to explain
this finding, but the censoring aspect of the model and the contradictory results below for the
truncation model suggest that would be inappropriate.10

The truncated regression model is generated by the non-limit observations in the censored
regression setting (see Hausman and Wise 1977). Thus, for the simple case of lower truncation
at zero (any other point, or upper truncation is a trivial modification of the model),

y∗
i t = αi + βxit + δdit, + εi t

yi t = y∗
i t if y∗

i t > 0 and is unobserved otherwise.

The log likelihood for the truncated regression model is

log L =
N∑

i=1

T∑
t=1

{
log

[
1

σ
φ

(
yit − αi − βxit − δdit

σ

)]
− log �

[
αi + βxit + δdit

σ

]}
.

Based on results already obtained, we can deduce how the MLE in this model is likely to behave.
By adding and subtracting a term and using the symmetry of the normal distribution, the log
likelihood for the tobit model may be written as

log L =
∑

i,t,y>0

log

[
1

σ
φ

(εi t

σ

)]
+

∑
i,t,y=0

log �

(−β ′xi t

σ

)

=
{ ∑

i,t,y>0

log

[
1

σ
φ

(εi t

σ

)]
−

∑
i,t,y>0

log �

(
β ′xi t

σ

)}

+
{ ∑

i,t,y=0

log �

(−β ′xi t

σ

)
+

∑
i,t,y>0

log �

(
β ′xi t

σ

)}
.

The first line of the result is the log likelihood for a truncated regression model for the non-limit
observations. The second line is the log likelihood for the binary probit model. Since σ = 1 (though
the more general case produces the same result), we can see that since the tobit estimator of the
slopes is unbiased, and the probit estimator is biased upwards, we should expect the truncated

10Overall, the results for the tobit model seem striking, particularly the apparent lack of bias in the slope estimators.
Greene (2004) analyses the tobit model in particular in much greater detail, and finds that this finding holds up across a
wide variety of variations in the model specification, including the degree of censoring, the underlying fit of the latent
regression, the amount of correlation between xit and α i and other model features.
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regression estimator to be biased downwards, towards zero. The results in Table 4 are consistent
with this observation.

The simulations for the truncated regression model are produced using Geweke’s (1986)
suggested method,

yit = αi + βxi t + δdit, + σ�−1{uit + (1 − uit )�[(αi + βxit + δdit )/σ ]},
where uit is a draw from the standard uniform population. This one-to-one transformation produces
a single draw from the truncated at zero normal distribution with mean α i + βxit + δdit, and
standard deviation σ . The conditional mean function in the truncated regression model is

E[yit | αi , xit,dit ] = αi + βxit + δdit, + σλ[(αi + βxit + δdit )/σ ]

= αi + βxit + δdit, + σλi t ,

where λ(z) = φ(z)/�(z). For a continuous variable, xit

∂ E[yit | αi , xit , dit ]

∂xit
= β

[
1 − λi t

(
αi + βxit + δdit

σ
+ λi t

)]
,

so, for estimating partial effects, the scale factor is the term in square brackets (The term is
bounded by zero and 1. See, for example Maddala (1983) or Greene (2003, Section 22.2.3).)
Once again, the ‘true’ value would depend on the data. Repeating the logic used for the tobit
model, we evaluated this at the true values of α i = xit = 0 and δdit = 1(0.5) with σ = 1, so
that our population value is 0.486. The sample estimates would be based on δ̂(0.5)/σ̂ . As before,
the scale factor in the table displays the average scale factor divided by the true value as well as
the estimated marginal effect, now the scale factor times the estimated coefficient. Though the
coefficients and the estimated standard deviation in this model are noticeably biased, the effects
largely offset in the scale factor for the marginal effects. The effect itself is shown in the next
row of the table. The values there are compared to 0.486. It can be seen that since the scale factor
appears to be estimated without bias, the downward bias in the marginal effects here is due to the
bias in the coefficient estimator, not the bias in the estimator of the scale factor, in contrast to the
reverse in the tobit model.

Several panel data duration models have been analysed in this setting as well. Chamberlain
(1985) analysed the Weibull and gamma models and showed how the fixed effects could be
conditioned out of the models by analysing log(yit/yi 1).11 Using Kalbfleisch and Prentice’s (1980)
formulation of the Weibull model, we have the survival function

S(yit | αi , xit , dit ) = exp
[−(λi t yi t )

p
]
, λi t = exp[−(αi + βxit + δdit )], p = 1/σ

and hazard function

h(yit | αi , xit , dit ) = λi t p(λi t yi t )
p−1.12

11Allison (1998, 2002) examined the Cox model using Monte Carlo methods.
12This form re-parameterizes both Chamberlain’s and Lancaster’s description of the model. In the former, Chamberlain

has dropped the log of the scale parameter from the log of the hazard, but nothing is lost if it is simply absorbed into the
fixed effect.
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Duration data are often censored. Let Qit = 1 if the observation is ‘complete’ and Qit = 0 if the
observation is censored. Then, the log likelihood is

log L =
∑
i,t

[
log S(yit | αi , xit , dit ) + Qit log h(yit | αi , xit , dit )

]
.

Replications for the simulations are drawn by inverting the survival function to produce draws

log yit = αi + βxit + δdit + σ log(− log(1 − uit )).

Observations on log yit were censored at 3. Once again, all three structural parameters of the
model are equal to 1.0. Table 4 presents the estimates for the Weibull model with censored data.
In this instance, the two estimators of β and δ converge to their population values from different
directions, β from below and δ from above. As in the tobit case, the estimator of σ is attenuated.13

These results for the slopes are actually contradictory if we view the Weibull model with censoring
as a distributional alternative to the tobit model. Evidently, the structure is more complicated than
that.

These findings highlight two results. First, they suggest that the results for the binary choice
models do not carry over to these continuous choice models. Indeed, there seems to be no persistent
pattern whether the estimator is biased upwards or downwards, or at all in these settings. Where
there is a finite sample bias, it appears to be much smaller than for the probit and logit estimators.
Second, they suggest the ambiguity of focusing on the slope coefficients in estimation of these
models. One might be tempted to conclude that the MLE with fixed effects is unbiased in the
tobit setting—by dint of only the coefficients, it appears to be. But when the marginal effects of
the model are computed, the force of the small sample bias is exerted on the results through the
disturbance standard deviation. Third, however, the results in Table 4 suggest that the conventional
wisdom on the fixed-effects estimator, which has been driven by the binary choice models, might
be too pessimistic. With T equal to only 5, the estimators appear to be only slightly affected by
the incidental parameters problem. Even at T = 3, the 7% upward bias in the marginal effects in
the tobit model is likely to be well within the range of the sampling variability of the estimated
parameter.

3.3. Estimated standard errors

In all the cases examined, a central issue is the extra variation induced in the parameter
estimators by the presence of the inconsistent fixed effect estimators. Since the estimator, itself, is
inconsistent, one should expect distortions in estimators of the asymptotic covariance matrix.
Table 5 lists, for each model, the estimated asymptotic standard errors computed using the
estimated second derivatives matrix and the empirical standard deviation based on the 200
replications in the simulation, using the N = 1000, T = 8 group of estimators. The ‘analytic’
estimator is obtained by averaging the 200 estimated asymptotic standard errors. The empirical
estimator is the sample standard deviation of the 200 estimates obtained in the simulation. The
latter should give a more accurate assessment of the sampling variation of the estimator while
the former is, itself, an estimator which is affected by the incidental parameters problem. There

13Lancaster (2000, p. 397) states ‘the estimate for θ converging to a number less than the true value’. In his formulation, θ
is 1/σ for the formulation above, so our results are not consistent with his assertion. The text seems to suggest Chamberlain
as the source of the claim, but Chamberlain does not discuss the issue, so this inconsistency is unresolved.
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Table 5. Comparison of estimated standard errors and sample standard deviations of sample estimates.

Analytic Empirical % Underestimate

Model β δ β δ β δ

Probit 0.2234 0.3008 0.2606 0.3254 14.0 7.6

Logit 0.2324 0.3697 0.2627 0.4312 11.5 14.3

Ordered probit 0.1281 0.2088 0.1487 0.2392 13.9 12.7

Tobit 0.0692 0.1296 0.0800 0.1386 13.5 6.5

Truncation 0.0242 0.0476 0.0265 0.0431 8.7 −10.4

Weibull 0.0175 0.0350 0.0181 0.0375 3.3 6.7

is clearly some downward bias in almost all the estimated standard errors. The implication is that
as a general result, test statistics such as the Wald statistics (t ratios) will tend to be too large
when based on the analytic estimator of the asymptotic variance—estimates are biased upwards
and standard errors are biased downwards. The last two columns in the table give the percentage
by which the diagonals of the inverse of the Hessian underestimate the sampling variance of the
estimator.

4. CONCLUSIONS

The Monte Carlo results obtained here suggest a number of conclusions. They are consistent with
the widely held impression that the MLE in the presence of fixed effects shows a large finite
sample bias in discrete choice models when T is very small. The general results for the probit and
logit models appear to be mimicked by the ordered probit model. The bias is persistent, but it does
drop off rapidly as T increases to 3 and more. Heckman’s widely cited result for the probit model
appears to be incorrect, however. The differences observed here do not appear to be a function
of the mechanism used to generate the exogenous variables. Heckman used Nerlove’s (1971)
dynamic model whereas we used essentially a random cross section. Our results were similar for
the two cases. The (well-established) extreme result of a 100% bias usually cited for the binary
choice model with T = 2 may itself be a bit of an exaggeration. The marginal effects in these binary
choice models are overestimated by a factor closer to 50%. A result which has not been considered
previously is the incidental parameters effect on estimates of the standard errors of the MLEs.
We find that while the coefficients are uniformly overestimated, the asymptotic variances are
generally underestimated. This result seems to be general, carrying across a variety of models,
independently of whether the biases in the coefficient estimators are towards or away from zero.

Models with mixed and continuous dependent variables behave quite differently from the
discrete choice models. Overall, where there are biases in the estimates, they seem to be much
smaller than in the discrete choice models. The ML estimator shows essentially no bias in the
coefficient estimators of the tobit model. But the small sample bias appears to show up in the
estimate of the disturbance variance. This bias would be transmitted to estimates of marginal
effects. However, this bias appears to be small if T is 5 or more. The truncated regression and
Weibull models are contradictory, and strongly suggest that the direction of bias in the fixed-
effects model is model specific. It is downwards in the truncated regression and in either direction
in the Weibull model.
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The received studies of the behaviour of the MLE in the presence of fixed effects have
focused intensively and exclusively on the probit and logit binary choice models. Unfortunately,
analytic results for other models do not appear to be forthcoming. The technology exists to
estimate fixed-effects models in many other settings. While it is understood that Monte Carlo
results on, for example the directions of biases, may be specific to the assumed data generating
processes, our results here and in other studies, and the results of other researchers are strongly
suggestive. Given the availability of high-quality panel data sets, there should be substantial
payoff to further scrutiny of this useful model in settings other than the binary choice models.
The question does remain, should one use this technique? It obviously depends on T and the
model in question. Simply avoiding the estimator altogether, based on the common wisdom that
it is biased and inconsistent, neglects a number of considerations, and might be ill advised if the
alternative is a random-effects approach or a semi-parametric approach which sacrifices most of
the interesting content of the analysis in the interest of robustness. The preceding suggests that
some further research on the subject would be useful. Lancaster (2000, FN 18) notes ‘The fact that
the inconsistency of ML in these models [Neyman and Scott’s simple regression models] is rather
trivial has been unfortunate since it has, I think, obscured the general pervasiveness and difficulty
of the incidental parameters problem in econometric models’. The results obtained here strongly
agree.
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