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Introduction

In this lesson, you will learn the following :
How to find a mathematical model, called a 

state-space representation, for linear time 
invariant system

How to convert between transfer function and 
state-space models

How to linearize a state-space representation
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Introduction

Two approaches are available for the analysis 
and design of feedback control systems
 The first is known as the classical or frequency-

domain technique 
This approach is based on converting a system’s differential 

equation to a transfer function
The primary disadvantage of the classical approach is its 

limited applicability
 It can be applied only linear time-invariant systems
But this approach rapidly provides stability and transient 

response information
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Introduction

Next, the state-space approach (also referred to as 
the modern or time-domain approach) is a unified 
method for modeling, analyzing and designing a wide 
range of systems
We can use the state-space approach both linear and 

nonlinear systems
Also it can handle the systems with nonzero initial conditions
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Select a particular subset of all possible system 
variables 
Call the variables in this subset  as state variables

For an nth-order system, write n simultaneous, 
1st-order differential equations in terms of the 
state variables
Call this system of simultaneous differential equations 

as state equations

State-space Representation
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Algebraically combine the state variables with 
the system’s input and find all other system 
variables for
Call this algebraic equation as the output equation

Consider the state equations and the output 
equations as a viable representation of the 
system
Call this representation of the system as a state-space 

representation(state equation + output equation)

State-space Representation

0t t
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RL network

Let us now follow the steps for state-space 
representation through an example
Consider RL network shown in figure with an initial 

current of i(0)

Select the current as state variable
Write the loop equation

( ) ( ) ( )di tL Ri t v t
dt

 
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RL network

Take the Laplace transform with including the initial 
conditions

Assuming the input, v(t), to be a unit step, u(t), whose Laplace 
transform is V(s)=1/s, we solve for I(s) and get

 i(t) is a subset of all possible network variables that we can find 
if we know its initial condition, i(0), and the input v(t)

[ ( ) (0)] ( ) (s)L sI s i RI s V  

( / ) ( / )

1 (0) 1 (0)( )
( ) /

1 1 1 (0)
/ /

1( ) 1 (0)R L t R L t

Li A B LiI s
s Ls R Ls R L s s R L Ls R

i
R s s R L s R L

i t e i e
R

 

          
      

     

where / , /A L R B L R  
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RL network

 Thus, i(t) is a state variable, and the loop equation is a state 
equation

Knowing the state variable, i(t), and the input v(t), we can find 
the value, or state, of any network variable at any time
 Thus, the algebraic equations of vR(t) and vL(t) are the output 

equations

Combining the state equation and the output equation is 
called the state-space representation

0t t

( ) ( ), ( ) ( ) ( )R Lv t Ri t v t v t Ri t  

( ) ( ) ( )( ) ,

( ) ( ) ( )

R Lv t v t v ti t
R R

di t v t Ri t
dt L


 



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RLC network

Let us now extend our observations to a 2nd-
order system and find the state-space 
representation of this 2nd-order system

Since the network is 2nd-order, two simultaneous 1st-
order differential equation are needed to solve for two 
state variables

Select i(t) and q(t)(the charge on the capacitor) as the 
two state variables
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RLC network

Write the loop equation

Converting the equation in terms of                , we get

An nth-order differential equation can be converted to n
simultaneous 1st-order differential equation of the form

, which is a linear combination of the state variables and 
the input, 

( ) 1( ) ( ) ( )di tL Ri t i t dt v t
dt C

  
( )( ) dq ti t

dt


2

2

( ) ( ) 1 ( ) ( )dq t dq tL R q t v t
dt dt C

  

1 1 2 2 1
( ) ( ) ( ) ( ) ( )i

i i in n i
dx t a x t a x t a x t b f t

dt
    

( )f t
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RLC network

Summarizing the two resulting equations, we get

These equations are the state equations

 From these two state variables, we can solve for all 
other network variables
For example, the voltage across the inductor can be written in 

terms of the solved state variables and the input as

 This equation is an output equation

 The combined state equation and output equation is 
called as state-space representation

2

2

( ) ( ),

( ) ( ) 1 1( ) ( ) ( )

dq t i t
dt

di t dq t Rq t i t v t
dt dt LC L L



    

1( ) ( ) ( ) ( )LV t q t Ri t v t
C

   
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RLC network

Is there any restriction on the choice of state 
variables? YES!
No state variable can be chosen if it can be expressed 

as a linear combination of the other state variables
For example, if VR(t) is chosen as a state variable, then i(t)

can not be chosen, because VR(t) can be written as a linear 
combination of i(t), namely

Under these circumstances we say that the state variables 
are linearly independent

State variables must be linearly independent; that is, no state 
variable can be written as a linear combination of all the other 
state variables

( ) ( )RV t Ri t



Dept. Information and Communication Eng.
14

RLC network

The state and output equations can be written in 
vector-matrix form if the system is linear
 Thus, the state-space representation of the RLC 

network given can be written as

where
,u y Du   x Ax B Cx

0 1 0/
,   ,    ,   ,1 1/

dq dt q
Rdi dt i

LC L L

                           

x x A B

1( ),    ,    1,   ( )Ly V t R D u v t
C

        
C

(state vector) (system matrix) (input matrix)
(time derivative 

of the state vector)

(output vector) (output matrix) (feedforward 
matrix)
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RLC network

The first step in representing a system is to 
select the state vector, which must be chosen 
according the following considerations:
A minimum number of state variables must be 

selected as components of the state vector
 The components of the state vector (that is, this 

minimum number of state variables) must be linearly 
independent

How do we know the minimum number of state 
variables to select?
Typically, the minimum number required equals to the order 

of differential equation describing the system
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Applying the State-Space Representation

Example:
Given the electrical network of figure below, find a 

state-space representation if the output is the current 
through the resistor

Solution:
Step 1: 

 Label all of the branch currents in the network. 
 These include                   and          as shown in the figure( ), ( )L Ri t i t ( )Ci t
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Applying the State-Space Representation

Step 2: 
 Select the state variables by writing the derivative equation for 

all energy storage elements, that is, the inductor and capacitor
 Thus,

Using these two equations, choose the state variables as the 
quantities that are differentiated, namely           and

Step 3:
 Apply the network theory to obtain           and           in terms of 

the state variables
 At Node 1:

 Around the outer loop:
Step 4: 

Using the equations we wrote in the previous steps, obtain the 
following state equations: 

( ) ( )( ), ( )C L
C L

dv t di tC i t L v t
dt dt

 

( )Cv t ( )Li t

( )Lv t ( )Ci t

( )( ) ( ) ( ) ( )C
C R L L

v ti t i t i t i t
R

     

( ) ( ) ( )L Cv t v t v t  
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Applying the State-Space Representation

Step 5: 
 Find the output equation. Since the output is         ,

 The final result for the state–space representation in vector-
matrix form is

( )Ri t

1 , ( )

1 1 1 1, ( )

C L
C L C

C L
C L C

dv diC v i L v v t
dt R dt
dv div i v v t
dt RC C dt L L

     

      

1( ) ( )R ci t v t
R



1 1 0
1( ), 011 0

C C C
R

L L L

v v vRC C v t i
i i iR

LL

                                 




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Converting a Transfer Function to State Space

We will learn how to convert a transfer function 
representation to a state-space representation
 Let us begin by showing how to represent a general 

nth-order linear differential equation with constant 
coefficients in state-space in the phase variable-form
Phase variable: A set of state variable where each 

subsequent state variable is defined to be the derivative of 
the previous state variable

We will then show how to apply this representation to 
transfer function

General differential equation:
1

1 1 0 01

n n

nn n

d y d y dya a a y b u
dt dt dt



     
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Converting a Transfer Function to State Space

A convenient way to choose state variables is to 
choose the output, y(t), and its (n-1) derivatives as the 
state variables
This choice is called phase-variables choice.

Choosing the state variables, xi, we get

Differentiating both sides yields

 The state equations are evaluated as

2 1

1 2 3 2 1, , , ,
n

n n

dy d y d yx y x x x
dt dt dt



   

2 3

1 2 32 3, , , ,
n

n n

dy d y d y d yx x x x
dt dt dt dt

      

1 2 2 3 1 0 1 1 2 1 0, , , ,n n n n nx x x x x x x a x a x a x b u            
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 The state–space representation in vector-matrix form 
is

Converting a Transfer Function to State Space

1 1

2 2

3 3

1 1

0 1 2 3 4 5 1 0

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0n n

n nn

x x
x x
x x

u

x x
a a a a a a a x bx

 



      
      
      
      

       
      
      
      

                 

 

 

 

          

 

 

 

1

2

31 0 0 0

n

x
x

y x

x

 
 
 
 
 
 
  




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 In summary, to convert a transfer function into state 
equations in phase-variable form, we first convert the 
transfer function to a differential equation by cross-
multiplying and taking the inverse Laplace transform, 
assuming zero initial conditions 

 Then, we represent the differential equation in state-
space in phase-variable form

An example illustrates the process
Example:
 Find the state-space representation in phase-variable 

form for the transfer function shown in the figure 
below

Converting a Transfer Function to State Space
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Solution:
Step 1: 

 Find the associated differential equation
 Since                            , cross-multiplying yields

 The corresponding differential equation is found by taking the 
inverse Laplace transform, assuming zero initial conditions:

Step 2:
 Select the state variables
Choosing the state variables as successive derivatives, we get

Converting a Transfer Function to State Space

3 2

( ) 24
( ) 9 26 24

C s
R s s s s


  

 3 29 26 24 ( ) 24 ( )s s s C s R s   

9 26 24 24c c c c r     

1 1 2

2 2 3

3 3 1 2 3

1

          
                   
24 26 9 24

        

x c x x
x c x x
x c x x x x r

y c x

 
    
       
 



 

 

(State variables) (System equations)

(Output equation)
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 The state–space representation in vector matrix form is

 In this point we can create an equivalent block diagram of the 
system to visualize the state variables

We draw three integral blocks as shown in figure below and 
label each output as one of the state variables

Converting a Transfer Function to State Space

 
1 1 1

2 2 2

3 3 3

0 1 0  0  
0 0 1 0 , 1 0 0     
24 26 9 24

x x x
x x r y x
x x x

         
                    
                    






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Converting a Transfer Function with polynomial 
in numerator
 The numerator and denominator can be handled 

separately

Converting a Transfer Function to State Space
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Example: Find the state-space representation of the 
transfer function shown in Figure

 (Solution)
 The state–space representation in vector matrix form is

Converting a Transfer Function to State Space
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 

1 1
2

1 2 2

2 3

1

3 2 1 2

3

0 1 0  0
( ) ( 7 2) ( ) 0 0 1 0

24 26 9 1

 
7 2 2 7 1

        

x x
C s s s X s x x r

x x

x
y x x x y x

x

       
                   
                

 
       
  







(Equivalent block diagram)

Converting a Transfer Function to State Space
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Example:
A missile in flight, as shown in Figure P3.11, is subject 

to several forces: thrust, lift, drag, and gravity
 The missile flies at an angle of attack,    , from its 

longitudinal axis, creating lift
 For steering, the body angle from vertical,    , is 

controlled by rotating the engine at the tail
 The transfer function relating the body angle,   , to the 

angular displacement,   , of the engine is of the form

Represent the missile steering control in state space

Converting a Transfer Function to State Space







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Converting a Transfer Function to State Space

 Thrust is the force which moves an aircraft through the air
 Thrust is used to overcome the drag of an airplane, and to 

overcome the weight of a rocket
 Thrust is generated by the engines of the aircraft
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Solution:
The equivalent cascade transfer function is as shown below

For the first box,

Selecting the phase variables as the state variables:
Writing the state and output equations:

Converting a Transfer Function to State Space

02 1

3 3 3 3

( )aK KK Kx x x x t
K K K K

     
1

2

3

x x
x x
x x


 
 





1 2

2 3

0 1 2
3 1 2 3

3 3 3 3

( )a

x x
x x

K KK Kx x x x t
K K K K






    






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 In vector-matrix form,

Converting a Transfer Function to State Space

1 2( )   b b

a a

K Ky t x x x x
K K

    

1 1

2 2

3 0 31 2

3 3 3 3

1

2

3

0 1 0  0
0 0 1 0 (t),

4

 
1 0   

a

b

a

x x
x x
x K x KK K

K K K K

x
Ky x
K

x



   
                                 
      

 
           






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Given the state and output equations

 take the Laplace transform assuming zero initial 
conditions:

Solving for        yields

where    is identity matrix 

Substituting the equation into equation                    
yields

Converting from state space to a Transfer Function

,u y Dux = Ax + B = Cx +

( ) ( ) ( ), ( ) ( ) ( )s s s s s s s   X AX BU Y CX DU

( )sX
-1s s s s s s  ( I A)X( ) = BU( ) X( ) = ( I A) BU( )

I

( ) ( ) ( )s s s Y CX DU

-1 -1

-1

s s s s s s
ss s
s

 



Y( ) = C( I A) BU( ) + DU( ) = [C( I A) B + D]U( )
Y( )T( ) = = C( I A) B + D
U( )
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Example:
Given the system defined by the following equations, 

find the transfer function                        , where        is 
the input and        is the output

Solution:
First find 

Converting from state space to a Transfer Function

/s s sT( ) = Y( ) U( ) sU( )
sY( )

 
1 1 1

2 2 2

2 3 3

0 1 0  10  
0 0 1 0 , 1 0 0     
1 2 3 0

x x x
x x u y x
x x x

         
                    
                    







s( I - A)

0 0 0 1 0 1 0
( ) 0 0 0 0 1 0 1

0 0 1 2 3 1 2 3

s s
s s s

s s

     
              
             

I A
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Now form

Substituting                      and      into equation, we obtain the 
final result transfer function

Converting from state space to a Transfer Function

1s ( I - A)

2

2
1

3 2

3 2 3 1
1 ( 3)

2( 1)
( )      

s 3s 2s 1

s s s
s s s

s s s
s 

   
   
     

  
I A

1, ,s ( I - A) B C D

 
10
0 , 1 0 0 , 0
0

D
 
    
  

B C
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Converting from state space to a Transfer Function

 

 

1

2

2

3 2

2
2

3 2 3 2

( ) ( )

3 2 3 1
1 ( 3)

10
2( 1)

1 0 0 0
s 3s 2s 1

0

10( 3 2)
1 10( 3 2)1 0 0 10

s 3s 2s 1 s 3s 2s 1
10

        

s s D

s s s
s s s

s s s

s s
s s

s

  

   
               

  
  

            

T C I A B
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Laplace Transform Solution of State Equation

Math reference for Inverse Matrix:
 Let              be an         square matrix
Define an        matrix             by setting

where         is the minor formed from A by deleting row j and 
column i of A

 Then, 

ijA a    n n

n n ijB b   

 1 1 i j
ij jib M

A
 

jiM

1B A
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Laplace Transform Solution of State Equation

Given the state and output equations

 Taking the Laplace transform of both sides of the state 
equations yields

 In order to separate       , replace          with           , 
where    is an         identity matrix, and n is the order of 
the system

Combining all of the        terms, we get

,u y Dux = Ax + B = Cx +

( ) (0) ( ) ( )s s s sX x = AX + BU

( )sX ( )s sX ( )s sIX
I n n

( )sX

(0)s s s ( I A)X( ) = x BU( )
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Laplace Transform Solution of State Equation

Solving for        by premultiplying both sides of the last 
equation by              yields

 Taking the Laplace transform of the output equation 
yields

1s ( I A)
( )sX

1[ 0 ]
adj [ 0 ]
det

s s s
s s
s

 



X( ) = ( I - A) x( ) BU( )
( I - A)= x( ) BU( )
( I - A)

s s sY( ) = CX( ) + DU( )
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Eigenvalues and Transfer Function Poles

Example:
Given the system represented in state space by equations

do the following:
 a. Solve the preceding state equation and obtain the output for 

the given input
 b. Find the eigenvalues and the system poles

Solution:

,
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Eigenvalues and Transfer Function Poles
1

1( )L x t



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Meiling CHEN

Homework Assignment #3
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